A black body or blackbody is an idealized physical object that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light. In contrast, a white body is one with a "rough surface that reflects all incident rays completely and uniformly in all directions."
A black body in thermal equilibrium (that is, at a constant temperature) emits electromagnetic black-body radiation. The radiation is emitted according to Planck's law, meaning that it has a spectrum that is determined by the temperature alone (see figure at right), not by the body's shape or composition.
An ideal black body in thermal equilibrium has two main properties:
Real materials emit energy at a fraction—called the emissivity—of black-body energy levels. By definition, a black body in thermal equilibrium has an emissivity . A source with a lower emissivity, independent of frequency, is often referred to as a gray body.
Constructing black bodies with an emissivity as close to 1 as possible remains a topic of current interest.
In astronomy, the radiation from and is sometimes characterized in terms of an effective temperature, the temperature of a black body that would emit the same total flux of electromagnetic energy.
A more modern definition drops the reference to "infinitely small thicknesses":
Suppose the cavity is held at a fixed temperature T and the radiation trapped inside the enclosure is at thermal equilibrium with the enclosure. The hole in the enclosure will allow some radiation to escape. If the hole is small, radiation passing in and out of the hole has negligible effect upon the equilibrium of the radiation inside the cavity. This escaping radiation will approximate black-body radiation that exhibits a distribution in energy characteristic of the temperature T and does not depend upon the properties of the cavity or the hole, at least for wavelengths smaller than the size of the hole. See the figure in the Introduction for the spectrum as a function of the frequency of the radiation, which is related to the energy of the radiation by the equation E = hf, with E = energy, h = Planck constant, f = frequency.
At any given time the radiation in the cavity may not be in thermal equilibrium, but the second law of thermodynamics states that if left undisturbed it will eventually reach equilibrium, although the time it takes to do so may be very long. Typically, equilibrium is reached by continual absorption and emission of radiation by material in the cavity or its walls., Chapter 1, Chapter 13 Radiation entering the cavity will be "H-theorem" by this mechanism: the energy will be redistributed until the ensemble of photons achieves a Planck distribution. The time taken for thermalization is much faster with condensed matter present than with rarefied matter such as a dilute gas. At temperatures below billions of Kelvin, direct photon–photon interactionsRobert Karplus* and Maurice Neuman, "The Scattering of Light by Light", Phys. Rev. 83, 776–784 (1951) are usually negligible compared to interactions with matter. Photons are an example of an interacting boson gas, and as described by the H-theorem, under very general conditions any interacting boson gas will approach thermal equilibrium.
The boundary of a body forms an interface with its surroundings, and this interface may be rough or smooth. A nonreflecting interface separating regions with different refractive indices must be rough, because the laws of reflection and refraction governed by the Fresnel equations for a smooth interface require a reflected ray when the refractive indices of the material and its surroundings differ. A few idealized types of behavior are given particular names:
An opaque body is one that transmits none of the radiation that reaches it, although some may be reflected. That is, τ = 0 and α + ρ = 1.
A transparent body is one that transmits all the radiation that reaches it. That is, τ = 1 and α = ρ = 0.
A grey body is one where α, ρ and τ are constant for all wavelengths; this term also is used to mean a body for which α is temperature- and wavelength-independent.
A white body is one for which all incident radiation is reflected uniformly in all directions: τ = 0, α = 0, and ρ = 1.
For a black body, τ = 0, α = 1, and ρ = 0. Planck offers a theoretical model for perfectly black bodies, which he noted do not exist in nature: besides their opaque interior, they have interfaces that are perfectly transmitting and non-reflective.
It has long been known that a carbon black coating will make a body nearly black. An improvement on lamp-black is found in manufactured . Nano-porous materials can achieve Refractive index nearly that of vacuum, in one case obtaining average reflectance of 0.045%. In 2009, a team of Japanese scientists created a material called nanoblack which is close to an ideal black body, based on vertically aligned single-walled . This absorbs between 98% and 99% of the incoming light in the spectral range from the ultra-violet to the far-infrared regions.
Other examples of nearly perfect black materials are super black, prepared by chemically etching a nickel–phosphorus alloy, vertically aligned carbon nanotube arrays (like Vantablack) and flower carbon nanostructures; all absorb 99.9% of light or more.
Using this model the effective temperature of stars is estimated, defined as the temperature of a black body that yields the same surface flux of energy as the star. If a star were a black body, the same effective temperature would result from any region of the spectrum. For example, comparisons in the B (blue) or V (visible) range lead to the so-called B-V color index, which increases the redder the star, with the Sun having an index of +0.648 ± 0.006. Combining the U (ultraviolet) and the B indices leads to the U-B index, which becomes more negative the hotter the star and the more the UV radiation. Assuming the Sun is a type G2 V star, its U-B index is +0.12. The two indices for two types of most common star sequences are compared in the figure (diagram) with the effective surface temperature of the stars if they were perfect black bodies. There is a rough correlation. For example, for a given B-V index measurement, the curves of both most common sequences of star (the main sequence and the supergiants) lie below the corresponding black-body U-B index that includes the ultraviolet spectrum, showing that both groupings of star emit less ultraviolet light than a black body with the same B-V index. It is perhaps surprising that they fit a black body curve as well as they do, considering that stars have greatly different temperatures at different depths. For example, the Sun has an effective temperature of 5780 K, which can be compared to the temperature of its photosphere (the region generating the light), which ranges from about 5000 K at its outer boundary with the chromosphere to about 9500 K at its inner boundary with the convection zone approximately deep.
The cooling of a body due to thermal radiation is often approximated using the Stefan–Boltzmann law supplemented with a "gray body" emissivity (). The rate of decrease of the temperature of the emitting body can be estimated from the power radiated and the body's heat capacity. This approach is a simplification that ignores details of the mechanisms behind heat redistribution (which may include changing composition, or restructuring of the body) that occur within the body while it cools, and assumes that at each moment in time the body is characterized by a single temperature. It also ignores other possible complications, such as changes in the emissivity with temperature, and the role of other accompanying forms of energy emission, for example, emission of particles like neutrinos.
If a hot emitting body is assumed to follow the Stefan–Boltzmann law and its power emission P and temperature T are known, this law can be used to estimate the dimensions of the emitting object, because the total emitted power is proportional to the area of the emitting surface. In this way it was found that X-ray bursts observed by astronomers originated in neutron stars with a radius of about 10 km, rather than black holes as originally conjectured. An accurate estimate of size requires some knowledge of the emissivity, particularly its spectral and angular dependence.
Definition
Idealizations
Cavity with a hole
Transmission, absorption, and reflection
Kirchhoff's perfect black bodies
Realizations
Cavity with a hole
Near-black materials
Stars and planets
Black holes
where c is the speed of light, ℏ is the reduced Planck constant, kB is the Boltzmann constant, G is the gravitational constant and M is the mass of the black hole. These predictions have not yet been tested either observationally or experimentally.
Cosmic microwave background radiation
Radiative cooling
where σ is the Stefan–Boltzmann constant, To remain in thermal equilibrium at constant temperature T, the black body must absorb or internally generate this amount of power P over the given area A.
See also
Citations
Bibliography
External links
|
|